L)

Check for
updates

ISWC '17, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

FingOrbits: Interaction with Wearables Using Synchronized
Thumb Movements

Cheng Zhang, Xiaoxuan Wang, Anandghan Waghmare, Sumeet Jain, Thomas Ploetz
Omer T. Inan, Thad E. Starner, Gregory D. Abowd
chengzhang, wangxx, anandghan, sumeet, thomas.ploetz, inan, thad, abowd @ gatech.edu
Georgia Institute of Technology

ABSTRACT

We present FingOrbits, a wearable interaction technique us-
ing synchronized thumb movements. A thumb-mounted ring
with an inertial measurement unit and a contact microphone
are used to capture thumb movements when rubbing against
the other fingers. Spectral information of the movements are
extracted and fed into a classification backend that facilitates
gesture discrimination. FingOrbits enables up to 12 different
gestures through detecting three rates of movement against
each of the four fingers. Through a user study with 10 partic-
ipants (7 novices, 3 experts), we demonstrate that FingOrbits
can distinguish up to 12 thumb gestures with an accuracy of
89% to 99% rendering the approach applicable for practical
applications.
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INTRODUCTION

Designing input capabilities for wearables is more challeng-
ing than for traditional computing devices like laptops be-
cause of the intentional smaller form factor. The substantially
reduced interaction space limits the complexity and function-
ality of interactions. Furthermore, wearables rely mostly on
touch-based input and a wearable interaction is typically done
while the user is on the go. Consequently, wearable interac-
tion techniques require minimal effort, which ideally trans-
lates to hands-free or at least one-handed input that is quickly
accessible and socially acceptable.

In this paper, we present FingOrbits, a concept for thumb
based interaction with wearables such as heads up displays
or smart watches. Users wear a thumb ring that contains a
contact microphone that communicates with the wearable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

ISWC’17, September 11-15, 2017, Maui, HI, USA

(© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5188-1/17/09...$15.00
https://doi.org/10.1145/3123021.3123041

62

2.4Hz / 1Hz / 1.7THz

. 2 3 Index

Middle
7 8 9 Ring

* 0 # | Little
|

| I |

v v v
‘ Cursor1:‘ Cursor2: Cursor3:
| 2.4Hz | 1Hz 1.7Hz
A B

Figure 1. The FingOrbits system and experimental setting.

Through rubbing a thumb against the fingers of the same
hand users perform specific input gestures. These gestures
require little to no user training. Utilizing a signal processing
and classification framework FingOrbits is able to recognize
up to 12 different one-handed input gestures that are defined
through three different movement (“rubbing”) patterns that
can be executed at each of the four fingers.

Our work is inspired by the recently presented Orbits system
[4], which allows users to interact with displays through syn-
chronizing their eye movements (captured using eye trackers)
with moving dots on the screen. We adapt the concept of syn-
chronized movements for one-handed input: i) Instead of an
eye tracking system only a simple thumb ring with integrated
contact microphone is required; ii) No exact trajectory match
is required but rather only a frequency, which provides for a
more flexible interaction. We evaluate our prototype system
in a user study and demonstrate its potential.

RELATED WORK

The motivation for wearables comes from the desire to in-
teract with computing devices at any time and in (almost)
any environment. Such scenarios are very challenging as in
many situations a user’s hand(s) might be occupied, which
renders interactions with the wearable device difficult. Com-
bined with the small interaction space on wearables the over-
all range of interactions is rather constrained. In order to
tackle such challenges a few interaction techniques have been
proposed that facilitate single handed input for wearables.

Cameras have been used extensively to track user input
through hand gestures. For example, the Digits system [6]
tracks hand poses using a wrist mounted camera. PinchWatch
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[7] operates similarly through utilizing a chest worn camera,
while CyclopsRing [1] uses a thumb worn camera. Alterna-
tively, inertial measurement units (IMUs)[8], magnetic sens-
ing[2, 5] and acoustic sensing[10] have been used recognzing
finger position or gestures.

We explore Orbits-like input mechanisms which involves fol-
lowing a moving element and syncing to one of the elements
for making a selection. Orbits have previously been explored
for eye tracking based interactions [4, 3]. We use similar
hardware as has been employed for FingerSound [9], which
was used for the recognition of Graffiti like input gestures.

SYSTEM DESCRIPTION

The FingOrbit system consists of a ring worn on the thumb
(details below) and an accompanying visual interface which
guides users to perform gestures. The visual interface is a
standard number pad consisting of digits from 0 — 9 and the
symbols * and # presented in the tabular format of four rows
and three columns. Each row starting from row 1 (topmost)
to row 4 (bottommost) is mapped to the index, middle, ring,
and little finger, respectively. Each column has a horizontally
moving cursor which moves within the bounds of its column
(Figure 1 — Left). The moving cursor frequencies are 2.4Hz,
1.0Hz, and 1.7Hz (from left to right). For instance, the left-
most cursor moves with a frequency of 2.4Hz in the first col-
umn between points A and B repeatedly as shown in figure
1. During testing, the gesture to be performed is marked by a
highlighted cell. For instance, (Figure 1) depicts cell 1 (row
1, col 1) as highlighted. The study participant is expected to
rub the against index finger (row 1) at a frequency of 2.4Hz
matching the cursor frequency in column 1.

Hardware

To capture thumb movements we built a 3D printed ring (Fig-
ure 1 — Right) that houses a contact microphone (Knowles
BU-21771) and an IMU (Bosch BNOOS55) that are connected
to a pre-amplifier and Teensy 3.2 board, respectively. An
USB audio board is used to connect the sensing platform to
a laptop via USB. The focus of our current prototype is to
show feasibility and thus all data processing is performed on
the wired laptop. Future iterations of our system will focus
on more autonomous operation as well as more comfortable
to wear hardware. The microphone’s recording rate was set
to 44.1kHz whereas the IMU sampled at 200Hz.

Data Processing

Figure 2 gives an overview of the data processing pipeline
that is used for FingOrbits. To detect the start and end of an
intended gesture, we slide a 100ms window with no overlap
on the received sound data. For each sliding window, we first
mask silent portions by applying an empirically determined
threshold. We then calculate the average energy of the audio
signal for every frame extracted by the sliding window pro-
cess. Once the maximum energy of a frame exceeds an em-
pirically determined activation threshold, we mark this frame
as the start of a gesture. If the maximum energy for any sub-
sequent, five consecutive frames (i.e., for at least 0.5 seconds)
falls below the threshold, we end the gesture.

If a gesture segment is longer than 1.3s, then we examine the
dominant frequency (band) of the gyroscope data (i.e., the
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Figure 2. Flow chart of FingOrbit’s data processing procedure.
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frequency with highest power in the whole frequency spec-
trogram). To estimate this frequency, we first find the axis
of gyroscope data with highest energy and then calculate the
FFT for the data of this axis.

If the estimated dominant falls in the range [0.5Hz—4.4Hz],
we label the extracted segment as a gesture and proceed to the
next step. Otherwise, we mark it as noise do not advance. The
range used was determined empirically with the prototype
system. Once a gesture is confirmed, we use the following
steps to estimate the frequency of the thumb movement and
identify on which finger the thumb is moving. First, we com-
pare the dominant frequency of the gyroscope data to a set of
preset frequencies (1Hz, 1.7Hz, 2.4Hz) and find the closest
match. For instance, if the estimated dominant frequency is
1.2Hz, it would suggest that the user is performing a gesture
to match the frequency of 1Hz. These preset frequencies are
chosen based on the results of a formative preliminary study
that aimed at identifying thumb moving frequencies that are
both comfortable to perform by users and discriminative w.r.t.
three different states (slow, medium, fast).

To recognize which finger the thumb is rubbing against, we
use gyroscope, linear acceleration, and orientation data from
the IMU. To remove the influence of body orientation on
the orientation data, we normalize the raw orientation data
by subtracting the mean value on each axis before further
processing. For each sensor, we extract statistical features
for each axis: minimum, maximum, mean, energy, vari-
ance, standard deviation, zero crossing rate, and entropy. To
represent the relationship between axes, we also extract the
Pearson-correlation and energy ratio between each pair of the
three axes on each sensor. In total we extract 90-dimensional
feature vectors (per extracted gesture segment) and feed it to
a support vector machine classification back-end to determine
the finger on which the gesture was performed.

EVALUATION

In order to explore the practicalities of our FingOrbits system
we conducted an experimental evaluation. We asked a total of
ten participants (five males, average age: 27.8 + 2.39, seven
novices, three experienced users) to use the system and to per-
form thumb gestures. The general task was to match frequen-
cies of movement patterns that were displayed on the laptop
screen through rubbing the instrumented thumb against one
of the other fingers (according to protocol; explained below).



Our study was performed in a controlled setting where partic-
ipants faced a computer screen while resting their arms on the
table. The system provided visual and auditory cues to assist
the user with the study. During the study, randomly individual
cells of the displayed grid were highlighted. Participants then
had to match their thumb’s rubbing frequency with the corre-
sponding cursor frequency of the cell. Figure 1 illustrates the
experimental apparatus.

Each participant finished three sessions — practice, training,
and testing. Per practice session three repetitions of each ges-
ture / cell were asked to be performed, whereas five itera-
tions per gesture / cell were performed for both training and
testing. The gesture to perform was selected randomly using
a balanced distribution. Before the practice session started,
a researcher explained the functionality of the system and
demonstrated how to perform FingOrbits gestures. Partici-
pants were guided to perform the rubbing gestures until they
saw a match between the frequency of the thumb movement
and the corresponding cursor. Gestures recorded during the
training sessions were used for training the analysis system
(classification back-end). In both the practice and training
sessions, real-time feedback of the recognized column was
provided to the user by highlighting the recognized column
on the screen . The three experienced users skipped the prac-
tice session and only performed the last two sessions. Both
the real-time classification results and the segmented raw sen-
sor data were recorded for further analysis.

Results

The overall accuracy across all ten participants is 89% for
recognizing all 12 gestures, where P8 to P10 are the expert
users. Figure 3 presents the accuracy for each participant in
different classification tasks. In the task of recognizing 12
gestures, P1 and P9 presents the highest accuracies of 91.7%
and 100% , while P2 and P8 have the lowest accuracies of
80% and 91.5% across novice and expert users. Disaggre-
gation of the recognition results gives insights into the per-
formance of the two classification steps: i) which finger is
the thumb rubbing against; and ii) which gesture (frequency)
is the participant performing. On average, discriminating the
four fingers the thumb rubs against works with 94% accuracy.
The subsequent step of discriminating the three possible rub-
bing frequencies works with 94% accuracy.

As the confusion matrix illustrates (Figure 4), the gesture that
has been recognized with lowest accuracy (82%) corresponds
to rubbing the thumb against the index finger with the middle
frequency (1.7Hz). The lowest accuracy (89.95%) for clas-
sifying three frequencies across 4 fingers is 1.7Hz as shown
in Figure 5a. The ring finger was the most confused finger as
shown in Figure 5b. In fact, most participants perceived rub-
bing their thumb against their ring and pinky fingers as rather
uncomfortable, which explains the poor recognition perfor-
mance and perhaps a greater variability of the performed ges-
tures.

DISCUSSION
In this paper we presented FingOrbits, a concept for interact-
ing with wearables through synchronized thumb movements.
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Figure 4. Confusion matrix for all 12 gestures

The developed concept and system adopts the Orbits idea
of synchronizing user input with predefined motion patterns
that serve as stimuli and as interaction triggers [4]. Unlike
the original, eye tracking based Orbits system our approach
tracks thumb movements using an instrumented ring. FingOr-
bits users can perform up to 12 different gestures through rub-
bing their thumb against other fingers using different move-
ment frequencies. Our system provides high classification ac-
curacies.

Design implications and Applications

Applications on wearables may not require all 12 input ges-
tures that FingOrbits can recognize. Reasons for a lim-
ited recognition lexicon could be usability (e.g., rubbing the
thumb against the pinkie is not very comfortable for many) or
simplicity that leads to lower cognitive load during interact-
ing. In what follows we will discuss exemplary applications
of FingOrbits. We will provide recommendations for gesture
sets to be used and —in light of this— link back to the results
of our user study.

Number Input

Current interfaces for entering numbers (digits) into heads-up
devices such as Google Glass require the use of a paired de-
vice (e.g., a smartphone), which slightly undermines the gen-
eral idea of wearables. FingOrbits could be used to facilitate
numerical input through utilizing 10 rubbing gestures while
the glasses display the moving cursor. Based on our current
apparatus it would be advisable to represent the digits 1-9 us-
ing the upper three fingers and the three different frequencies
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Figure 5. Results for discriminating frequencies and fingers separately.

each, and to map the digit 0 to 1Hz movement on the pinkie.
Such a setting would result in over 90% recognition accuracy.

Navigation, Shortcuts, and Music Player

Having four gestures can also be useful for a variety of appli-
cations. For instance, they can be used for shortcuts (match-
ing each gesture to an application), navigation (using four di-
rectional slides), and controlling a music player (next song,
previous song, pause, play). According to our user study
using the index and middle fingers as interaction targets for
FingOrbits results in high classification accuracy and maxi-
mal comfort. As such, the combination with the lowest and
the highest frequencies would provide a reliably recognizable
gesture set with average classification accuracies of the four
functions to be performed at about 95%.

Quick response to notification

Many applications only require binary input functionality
such as accepting or declining phone calls, or turning on/
off a notification. For such scenarios, FingOrbits should be
used with two fingers (index and middle) and a different rub-
bing frequency for each finger (1Hz and 2.4Hz). According
to our user study, such a configuration would lead to almost
ideal classification results (99%) without collecting any train-
ing data from the user.

Eyes-free interaction

To investigate how FingOrbits works when the gestures are
performed in an eyes-free fashion, we conducted an addi-
tional study with our three experienced users. We followed
the same procedure as for the previous experiment, except
that the arm of the participant was laying down naturally un-
der the table (in the lap), and we did not provide the moving
cursor from the testing session. All three participants per-
formed eyes-free FingOrbits gestures for the first time.

The overall accuracy was 84.4%, i.e., a moderate drop of
about 10% accuracy compared to the results of the first study.
The accuracy of classifying the gestures with rubbing fre-
quencies of 2.4Hz, 1Hz, 1.7Hz and were 96.7%, 98.3%, and
83.3% respectively. Consequently, if FingOrbits is used in an
eyes-free fashion without displaying the moving cursor, one
should stick to only two, rather distinct rubbing frequencies.
A further analysis revealed that the accuracy of recognizing
two frequencies on just the index finger and recognizing two
frequencies on both index and middle finger are 100% and
91.7%, respectively. These preliminary results illustrate that
FingOrbits has potential for real-world applications.
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User Experience

During the study, we noticed FingOrbits gestures were not
immediately intuitive to some participants in the practice ses-
sion. Some users mistakenly thought they had to match the
exact moving trajectory of the moving cursor, which was es-
pecially challenging for the highest speed. Some users were
confused as to when a gesture was complete. These issues
disappeared with training.

Some everyday activities, such as clapping, can produce false
positives for FingOrbits. One potential solution is to adopt
an activation gesture to start the whole recognition system.
Sweeping the thumb on the index finger at 1Hz is a good can-
didate, based on its high recognition rate (98%) for this ges-
ture across all 10 participants). However, we do not yest have
empirical evidence of the false positive rate for that gesture.
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