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Figure 1: OptiRing prototype (A) worn on a user’s index finger with a (B) miniature camera for sensing pointing at the fingertips,
providing a clear and (C-top) privacy-preserving (C-bottom) view of the index finger and thumb to enable subtle, index-to-thumb
interactions (D). All interactions shown are performed with the thumb on the index finger.

ABSTRACT
We present OptiRing, a ring-based wearable device that enables sub-
tle single-handed micro-interactions using low-resolution camera-
based sensing. We demonstrate that our approach can work with
ultra-low image resolutions (e.g., 5×5 pixels), which is instrumental
in addressing privacy concerns and reducing computational needs.
Using a miniature camera, OptiRing supports thumb-to-index fin-
ger gestures, such as stateful pinch and left/right swipes, as well
as continuous 1-DOF input. We present a modeling approach that
uses heuristic-based methods to identify interactions and machine
learning for input gating, generalizing recognition across users
and sessions. We assess this technique’s capabilities, accuracy, and
limitations through a user study with 15 participants. OptiRing
achieved 93.1% accuracy in gesture recognition, 99.8% accuracy for
stateful pinch gestures, and a minimal number of false positives.
Further, we validate OptiRing’s ability to handle continuous 1D
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input in a Fitts’ law study. We discuss these findings, the tradeoff
between resolution and interaction accuracy, and the potential of
this technology, which can help address challenges associated with
optical sensing for input.
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1 INTRODUCTION
Extended Reality (XR) systems are becoming more useful and ver-
satile, offering continuous access to information, creativity tools,
and communication platforms. To fully leverage their capabilities
and enable all-day usage, there is a need for a discreet and effortless
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input method. This includes a seamless way to navigate through
information provided by the headset, input data, and make selec-
tions.

Camera-based input systems hold great potential for enabling
accurate and intuitive user interaction through their rich sensing
capabilities, particularly for tracking hand and finger movements.
Prior investigations, as exemplified by [5, 6, 17, 26, 46, 60, 64], have
broadly explored the use of camera-based wearables for input in ex-
tended reality (XR) scenarios, validating their suitability and ability
to deliver precise interactions. However, these systems introduce
significant complexities. Foremost, concerns about privacy limit
the placement of cameras on wearables [16, 43] since they have the
potential to record and expose sensitive information. Additionally,
camera-based systems often impose significant computational costs
due to the high dimensionality of the input data stream, posing
challenges for resource-constrained wearable devices [47]. OptiR-
ing explores the use of low-resolution imaging to detect a distinct
set of thumb-index micro-interactions, while addressing privacy
concerns and computational resource demands.

While various techniques have been proposed to enhance privacy
for wearable devices [38], our focus lies in using low-resolution
imaging to enhance privacy. This approach mitigates privacy con-
cerns by reducing the visual information captured while continuing
to enable effective and efficient interactions [41, 42, 58, 59]. Addi-
tionally, the use of low-resolution imaging in camera-based input
systems reduces the computational demands required for image
analysis and inference by decreasing input data dimensionality.
This characteristic makes low-resolution imaging highly compatible
with the limited resources typically available in wearable devices.

To investigate and harness the potential of low-resolution sens-
ing for input, we take a multi-step approach. First, we propose
an input interaction scheme that can deliver practical input. Next,
we build a camera-equipped wearable prototype to support the
proposed input scheme. To gather data and insights, we conduct
a comprehensive user study involving multiple users, scenarios,
and interactions to evaluate the system’s performance. We further
provide a comprehensive analysis that examines how decreasing
resolutions influences the accuracy of interactions.

In this paper, we specifically select thumb-to-index finger inter-
actions since they facilitate single-handed, subtle, and expressive
input due to the close proximity and dexterity of these two fin-
gers. Additionally, the other fingers of the hand can effectively
conceal index-to-thumb interactions, ensuring their discreetness.
Thumb-to-index interactions also provide skin-to-skin tactile feed-
back. We implemented a system that supports three gesture inputs:
left swipe, right swipe, and long tap, as well as continuous 1D input
for tasks like scrolling and adjusting sliders (Figure 1). To maximize
sensing capabilities, we implemented this system in a ring form
factor, which situates the device close to the fingers, where most
interactions occur.

Finally, we highlight the capabilities of a camera as a sensing
modality to enable contextual interactions beyond the primary
input methods.

This work contributes to the fields of wearable devices, camera
input, privacy, and Human-Computer Interaction by:

(1) Developing a system consisting of a camera-equipped wear-
able device, an input interaction scheme, and a software
pipeline for data collection and analysis

(2) Evaluating the system’s performance via a series of studies
involving multiple users, scenarios, and interactions

(3) Providing a comprehensive impact analysis of how vary-
ing resolutions affect the accuracy of interactions and the
system’s overall effectiveness

2 RELATEDWORK
The field of wearable technology for extended reality (XR) interac-
tions is experiencing significant growth, with an increasing focus
on privacy and efficiency. This research thus aligns with two do-
mains: wearables designed for subtle inputs, particularly utilizing
camera-based sensing, and the exploration of techniques that specif-
ically address privacy and computational efficiency in camera-based
sensing.

2.1 Camera-based Interaction
The camera provides a rich sensing modality with detailed infor-
mation regarding a user’s actions and surroundings. Researchers
previously investigated placing the camera on various portions of
a user’s body to capture different interactions. OmniTouch [15], a
depth camera positioned on the shoulder, uses a pico projector that
recognizes interactions with common surfaces. PinchWatch [30]
investigates camera placement on the body, such as on the chest,
ear, and belt, to explore single-handed interactions. ShoeSense [3]
uses a camera positioned on a shoe facing upwards to sense in-air
hand interactions inside the camera’s field of view. ThermalRing
[64] employs a low-resolution thermal camera mounted on a ring to
recognize passive tags and detect gestures. These camera positions
capture novel interactions but require the user to physically place
their hand within the camera’s field of view, which in turn neces-
sitates large hand motions that can be less socially appropriate to
perform.

Magic finger [60] senses input on an external surface using a
tiny camera attached to the fingertip. Using optical flow to track
movement, the camera captures touch interaction with external sur-
faces and provides contextual interactions by recognizing surfaces.
CyclopsRing [5] employs a camera with a fisheye lens positioned
between the fingers to recognize seven single-handed gestures.
While the gesture set is single-handed, the gestures require full
hand motion and are not subtle. The camera on the fingertip or
between the fingers detects interactions; however, the form factor
may be uncomfortable for everyday use. Similarly, in [1], a cam-
era is mounted on the back of the user’s hand to detect the pose
and location of the hand, but the form factor could potentially be
uncomfortable for daily use.

FingerReader [4, 45], EyeRing [33], and TouchCam [48] investi-
gated the use of a ring-mounted camera. EyeRing and FingerReader
use the camera to detect where the user is pointing and deliver
contextual interaction, while TouchCam uses the camera to capture
where the finger contacts other body parts. A camera on a ring
increases the interaction space while maintaining a convenient
form factor, yet the input space provided by these works is limited.



OptiRing: Low-Resolution Optical Sensing for Subtle Thumb-to-Index Input SUI ’23, October 13–15, 2023, Sydney, NSW, Australia

Researchers have also investigated wrist-worn camera form fac-
tors in the past. Digits [26] uses a wrist-worn IR camera with an
IR laser projector, and FingerTrak [17] uses four thermal cameras
on a wristband to reconstruct the full hand pose. WatchSense [46]
utilizes a wristband-mounted depth camera to detect two-handed
interaction on the back of the hand. [6] identifies ten distinct single-
handed movements using a wrist-mounted RGB camera. AO-Finger
[57] uses a camera along with a stethoscope microphone for subtle
input. Though situating the camera on the wrist offers a convenient
form factor, challenges arise from potential occlusion caused by
clothing or when the wristband is worn snugly, impeding a clear
hand view. In addition, for some designs, the camera must protrude
slightly to provide a clear image of the hand, making the form factor
less compact. Compared to a wristband, a ring form factor has the
advantage of being physically close to where interactions happen,
obtaining richer sensing data and hence providing highly reliable
input.

Most of the preceding camera-based techniques require a high-
resolution camera with intensive processing. This limits their ap-
plicability in wearables, given their computing and battery power
constraints. Sensing methods that do not rely on cameras, such
as electric field sensing systems, electrical impedance tomogra-
phy, acoustics, optics, and more, have been suggested for input
[14, 19, 25, 65]. However, many of these techniques exhibit subpar
cross-session and cross-user performance, restricting their adapt-
ability.

2.2 Camera and Privacy
Researchers have extensively explored various approaches to en-
hance privacy for camera-based systems that encompass both hard-
ware and software solutions. Hardware-based solutions involve
physical measures, such as manually blocking the camera aperture
using a cover [31] or employing smart covers [11] that automatically
conceal the lens and require manual uncovering. Some devices, in-
cluding smart glasses and laptops, use LEDs [27] to indicate when
the camera is active, thus raising awareness among individuals
regarding potential privacy concerns. However, most of these tech-
niques rely on users actively noticing if the camera is on and taking
appropriate actions to safeguard their privacy. In a recent hardware
approach, researchers developed a physical optical filter utilizing
an optical kernel that can be trained to passively filter out sensitive
information in camera-based systems [44].

Traditional software solutions for privacy in camera-based sys-
tems encompass user notifications [8, 9] and access controls im-
plemented by applications [51, 54, 55]. Additionally, common tech-
niques such as image blurring [13, 18, 40] have been employed
during post-processing to safeguard private information, specifi-
cally human faces. However, research indicates that these methods
are inadequate in protecting all forms of sensitive information [38].
In recent studies, researchers focused on leveraging low-resolution
images to enhance privacy. It has been demonstrated that common
recognition tasks, such as human activity recognition [41, 42, 58, 59],
head pose estimation [7], and tracking individuals [32], can be
achieved accurately, even with reduced resolution input images,
while preserving user-identifiable information. These studies pro-
vide evidence that employing low-resolution imaging not only

contributes to achieving higher task accuracy but also ensures a
substantial level of visual privacy.

2.3 Ring-based Input
Researchers have investigated rings using various sensing methods
to enable novel interactions. Magic Ring [22],[29], and FingerSound
[61] use an IMU to detect finger movements on the body and exter-
nal surfaces. ThumbTrak [50] detects 12 thumb postures using a
ring with a proximity sensor array. eRing [53] and ElectroRing [24]
use electric field and RF sensing to detect hand input. iRing [36]
detects finger rotation, flexion, and external force with an infrared
(IR) reflection sensor that uses skin characteristics like reflectance
and softness.

These works enable single-handed input but can recognize only
gestural input, leaving a gap in the continuous input space. LightRing
[23] employs a gyroscope and an infrared proximity sensor to pro-
vide continuous mouse-like input but requires an external surface
for operation. TouchRing [52] employs printed electrodes for capac-
itive touch sensing on a ring to detect direct gesture input on the
ring. However, interacting directly with the ring is less ergonomic
and does not preserve skin-skin tactile feedback.

Some additional work has expanded the interaction space by com-
bining rings with other accessories, such as a wristband or another
ring. SkinTrack[66] permits continuous tracking of skin touches;
it consists of a ring that generates a constant high-frequency AC
signal and a wristband with multiple electrodes for sensing. Finger-
Ping [63] employs a surface transducer mounted on a thumb ring
that emits acoustic chirps into the body, which are received by four
wrist-attached receivers that recognize a variety of fine-grained
hand positions. SoundTrak [62] also uses an acoustic sensing tech-
nique to enable continuous 3D input; it consists of a ring that emits
a continuous sound wave captured by a wristband microphone
array, and the wristband tracks the movement of the ring in the
surrounding three-dimensional space.

AuraRing [39] utilizes a wristband with several sensor coils to
track a ring with an embedded electromagnetic transmitter; it can
estimate the ring’s five degrees of freedom pose. DualRing [28]
employs two rings (index and thumb) equipped with an IMU to
monitor the relative motion of the two fingers; it also uses high-
frequency RF sensing to detect contact between the two fingers
wearing rings. Similarly, Nenya [2] uses a magnetic ring that is
tracked by a wristband; the ring can be twisted and turned to
provide input. Though these explorations offer an exciting space
for interaction, the need for multiple wearables makes adoption
less likely.

3 OPTIRING
OptiRing is a wearable device in a ring form factor that enables
subtle thumb-to-index finger micro-interactions due to the proxim-
ity of the two fingers, which allows for small, nuanced movements.
The thumb’s dexterity further enhances interaction expressiveness.
These input methods focus on surface interactions near the tips of
both fingers, which are more ergonomic than direct engagement
with the ring and, hence, more natural and comfortable to perform.

OptiRing provides three interaction types: a stateful pinch, a
three-gesture set with widely recognized gestures (left swipe, right
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swipe, and long tap), and continuous 1D input. The system also
incorporates a gating mechanism that distinguishes when a user is
executing a genuine interaction and prevents false positives when
performing other interactions, like interacting with surrounding
objects.

3.1 Interactions
3.1.1 Stateful Pinch. We define a pinch as the act of the thumb
making firm contact with the index finger. To make the pinch
interaction stateful, OptiRing indicates at any time whether this
contact has been established, without needing to know or track
past events, such as the start of touch: this capability makes the
pinch interaction stateful. By including time constraints, stateful
pinch can enable the building of interactions, such as short taps
(clicks) and long taps (press and hold).

In this work, we used the stateful pinch to create additional
interactions, such as gestures and continuous input.

3.1.2 Directional Swipes. The OptiRing gesture set consists of two
directional swipes (left and right) for navigating a user interface
and a long tap for selection. Figure 1(D) illustrates how to execute
these gestures. The recognition of swipes and double taps is based
on the thumb and index figure movement pattern.

3.1.3 Continuous 1D Input. Continuous 1D interaction lets the
user glide their thumb over their index finger along its length to
provide continuous input in either direction, such as when scrolling
through a list or using a slider. Figure 1(D) shows how to perform
this.

3.1.4 False Positive Filtering. False positive detection and filtering
are fundamental for an input modality. OptiRing’s interaction recog-
nition pipeline (see Section 4) addresses false positives and enhances
the user experience by filtering out non-interactions and inaccu-
rate triggers. We use an input gating mechanism that distinguishes
between genuine interactions and other actions by analyzing the
thumb’s shape, position, and LED illumination pattern captured by
the camera.

3.2 Prototype
The OptiRing prototype consists of a 3D-printed base upon which
a miniature endoscopic camera (OVM6948 with dimensions 0.65 x
0.65 x 1.158 mm) and an LED (0.85 x 0.45 mm) are mounted. Figure 1
shows prototype components. The 3D-printed component contains
velcro straps to secure it to the user’s finger and allow it to fit
fingers of various sizes. The LED enables the system to work in the
dark and identify fingers. A red LED was chosen due to the camera
module’s integrated IR filter; of the colors we tested (green, yellow,
and blue), the red LED exhibited greater sensitivity to the camera.
Future prototypes may use an IR LED with an IR-sensitive camera.

The camera is mounted on a mechanism that allows rotation
along an axis that is perpendicular to the finger. The rotation lets
the camera provide a clear view of both the thumb and index fin-
ger, which is necessary to accommodate users with varying finger
lengths. We built the rotation mechanism by repurposing a poten-
tiostat and attaching it to the 3D-printed mount. The camera is
enclosed in a 3D-printed case and attached to the potentiostat’s
rotating knob, allowing it to turn when manually manipulated. Its

output is connected to an external circuit board that decodes its
analog signal and transmits it to a computer over a USB. Though
our current prototype is wired, we discuss an approach to make
our setup wireless in Section 8.

4 INTERACTION RECOGNITION PIPELINE
The primary components of the interaction recognition pipeline
consist of finger segmentation to separate the fingers from the back-
ground, input gating to remove false positives, and interaction recog-
nition to identify user-performed interactions. Figure 2 shows the
overall software pipeline, and the following sections explain the
individual components in detail.

Figure 2: Complete interaction recognition pipeline for Op-
tiRing. The recognition for gestures and continuous 1D input
follow two different flows but share the pinch recognition
mechanism.

4.1 Finger Segmentation
We employ color-based segmentation to separate fingers from the
backdrop in the camera’s output image. A red-colored LED on
the ring illuminates the thumb and index finger, which strongly
light up due to their proximity to the LED, while surfaces farther
away do not illuminate as intensely. The difference in intensity
of the red areas can be used to perform a color-based background
segmentation that leaves only the fingers.

Using active illumination for segmentation has the advantage
of enabling robust segmentation with a lightweight thresholding
approach as opposed to using a more computationally demanding
method, such as edge detection [10] orML-based techniques [34, 35].
This can help conserve the limited computing resources onwearable
devices. Further, robust segmentation lets us use heuristic-based
algorithms for interaction recognition.

The color-based thresholding is performed by first converting
the raw RGB image to HSV color space, followed by applying a
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specified threshold (lower bound H=0 S=179 V=82 to upper bound
H=179 S=255 V=255). We determined the threshold using test data
we collected and empirically calculated threshold values until the
background was removed entirely from the image and only fingers
remained. Since the LED powerfully illuminates the fingers and
completely overlays them with red light, the user’s skin tone has
little impact on color thresholds; hence, the same threshold values
apply to all users. After color segmentation, we transform the seg-
mented image into a binary image for further processing. Figure
3 shows the raw RGB image, RGB image after segmentation, and
binary image after segmentation.

4.2 Input Gating
We employ anML classifier to differentiate between instances when
users do not intend to make a gesture and when they are actively
performing or planning to make one. This helps to filter out false
positives. The classifier is trained using positive examples (where
a user performs or prepares to perform a gesture) and negative
examples (where a user handles an object or conducts an action
that is not valid). Figure 5 shows positive and negative examples.

For the classification task, we use a random forest classifier
with 100 trees. Classifier input is a flattened-out binary image after
segmentation. We examine the performance of this classifier in the
Results section.

4.3 Interaction Recognition
4.3.1 Stateful Pinch Detection. A pinch occurs when the index fin-
ger and thumb make contact. We detect pinches by first identifying
fingers using a contour detection algorithm [37] in the segmented
binary image (see Figure 3). Among all contours found, we filter out
those with an area less than 30% of the total image area since they
do not represent a finger; this threshold was determined through
empirical testing using sample data we collected. When no pinch is
performed, the image consists of two distinct contours representing
the two fingers. At the moment of contact, the two contours blend
into a single outline depicting the fingers in touch, representing a
pinch gesture. Figure 3 illustrates the contours when performing a
pinch and no pinch.

When a single contour is detected, OptiRing performs an ad-
ditional check to ensure that the width of the bounding box of
the detected contour is equal to the width of the frame. During
our initial experimentation, we discovered that when a pinch is
performed, the fingers always fill up the frame’s width due to the
camera’s location. Therefore, if the contour’s width matches the
frame’s width, OptiRing recognizes the gesture as a pinch.

4.3.2 Gesture Recognition. The three gestures—left swipe, right
swipe, and long tap—are distinguished by analyzing the motion and
duration of the thumb’s movement along the index finger when
the two fingers are in contact (pinching). The thumb movement is
tracked by monitoring the area of contour representing the fingers.
As the thumb moves closer to the ring, its appearance in the camera
enlarges; hence, the contour area increases, and vice versa. Figure
4 shows this change. The duration of the contact is calculated as
the time between the start and end of the pinch.

During a stateful pinch, the thumb making a quick slide on the
index finger is recognized as a left or right swipe, depending on the

Figure 3: Intermediate images generated during finger seg-
mentation and outlining finger contours. In each image, the
index finger is to the right, and the thumb is to the left. Both
fingers constitute a single contour outline during a pinch
but show separate contour outlines when not performing
a pinch. Images on the far right show fingers with a green
contour line.

direction of the slide. A long pinch where the thumb hardly moves
on the index finger is recognized as a long tap. Gesture recognition
is performed using a heuristic-based method that considers the
direction and duration of movement and that supports our goal of
low computational complexity with fast inference. Below, we list
our gesture recognition heuristics, which utilize specific threshold
values determined via empirical testing on sample data.

Swipe recognition. For gestures with between 5 and 20 (0.15-0.6
sec) frames, a left swipe (Figure 4a) is registered if the sum of the
contour area of the first two frames exceeds that of the last two
frames, and vice versa for a right swipe ( Figure 4b).

Long tap recognition. OptiRing records the contour area of each
frame during a valid pinch. When the pinch ends, it examines the
length of the recorded frames. It rejects as an accidental touch pinch
lengths of less than five frames. If the number of frames exceeds
20 (0.6 sec at 30fps) and is less than 40 (1.2 sec @ 30fps), OptiRing
considers the interaction to be a long tap gesture.

OptiRing’s sensing approach enables detection of the touching of
the index finger and thumb (pinching) and tracking the movement
of the two fingers with a single sensing modality. This differentiates
OptiRing from prior work, such as [24, 28], which requires multiple
sensing modalities to achieve the same.

4.3.3 Continuous 1D Tracking. When the user performs a con-
tinuous input interaction, OptiRing begins to track the thumb’s
position over the index finger when contact between the two fingers
is sensed. It does this by monitoring the contour area in the frame,
as is done for gesture recognition. To continuously track thumb
motion, OptiRing calculates the delta as the difference between the
thumb’s initial location when a pinch was first detected and its
current location. The delta can be positive or negative depending
on the direction of motion. Since the delta depends on the initial
touch position, which differs each time, OptiRing tracks the relative
movement of the thumb, not its absolute position: tracking relative
change over absolute change helps generalize the approach across
varied finger sizes and shapes. Finally, we apply a linear scaling
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(a) A finger performing a left swipe.

(b) A finger performing a right swipe.

Figure 4: Binary segmented images during a swipe gesture,
with green finger outlines. The images depict changing con-
tour areas as the finger moves closer to or away from the
camera. Note that the actual gesture lasted longer than five
frames, and some intermediate frames are omitted from the
sequence shown.

function (scaling factor = 0.0005) and a One Euro filter (fcmin =
0.01, beta = 0.05) to smooth the output stream.

5 EVALUATION
We evaluated OptiRing in a study with 15 participants (13 males,
two females). At the beginning of the study, the camera’s orientation
was adjusted on the ring prototype to the participants’ hand size so
that both their index finger and thumb were visible in the camera’s
field of view. During the evaluation, OptiRing captured the camera
feed at a resolution of 200x200 pixels and a frame rate of 30 FPS.

Our evaluation assessed OptiRing’s:
(1) Ability to accurately filter out unintended interactions and

their false positive performance
(2) Accuracy of pinch detection and gesture recognition
(3) Performance and precision for continuous input
(4) System performance across different resolutions

5.1 Input Gating
To evaluate how OptiRing would perform in real-world situations,
we conducted a study to assess the robustness of our gating classifier
and the false positives generated by our system. In this study, 10
participants (P1-P3 and P9-P15) were asked to interact with seven
everyday objects as they would normally. These objects included
a mug, a bowl with a spoon, a book, a smartphone, a TV remote,
a laptop, and a computer mouse. Each participant was instructed
to interact with all objects in any order they preferred for a total
of 5 minutes, but they were instructed not to make any gestures
intentionally.

Some common actions users performed included drinking from
the mug, eating with the bowl and spoon, mixing food in the bowl
with the spoon, pointing the TV remote and pressing buttons, mov-
ing themouse on the desk and clicking buttons, typing on the laptop,
using the trackpad on the laptop, lifting the laptop with both hands,
shutting the lid of the laptop, holding the book with both hands as

in a reading position, flipping through pages of the book, interact-
ing with the phone with taps, swipes, etc., and conversing on the
phone with the phone contacting the ears.

5.2 Stateful Pinch
We evaluated our pinch detection algorithm by conducting a user
study with 8 participants in a chair-desk environment, where par-
ticipants sat in front of a computer that provided visual cues for
performing pinch gestures. The pinch gesture involved touching
the index finger with the thumb for a specified time, and the par-
ticipants could make contact anywhere on their index finger. To
simulate a more realistic and ecologically valid data set, with differ-
ent backgrounds and hand positions, participants were instructed to
maintain continuous hand movement while performing the pinch
gestures.

Each participant performed 60 pinches, i.e., 3 sessions x 20 re-
peats per session. After each session, the participants took off and
put back on the prototype. This helped introduce variability in the
ring’s location and orientation. For additional pinch variation, each
pinch’s duration was randomly held between 0.4 and 1 second. We
recorded raw image data during the study to assess pinch detection
accuracy.

5.3 Gesture Recognition
We evaluated the gesture recognition system through a study with
10 participants (P1-P3 and P9-P15). Each participant was asked
to perform a total of 45 gestures, i.e., 3 gestures x 3 sessions x 5
repetitions per gesture. Gesture order was randomized for each
participant. Like the previous study, participants were instructed to
remove and re-wear the ring after each session. They were given
visual cues on a computer screen to perform a gesture within a
3-second window and first completed a practice round to become
familiar with the system before the study commenced. During the
study, raw image data was collected to assess the system’s gesture
recognition accuracy.

We also studied false positive performance using the data col-
lected from this and the input gating studies.

5.4 Continuous 1D Input
We evaluated our system’s 1D tracking performance by performing
the 1D Fitts’ Law study with 10 participants (P1-P3 and P9-P15).
The study had three target widths, 10 px, 40 px, and 70 px, and
three target amplitudes (the distance between the targets), 100 px,
300 px, and 500 px, resulting in a total of 9 test conditions. These
conditions varied in difficulty, from easy (W=70 A=100) to challeng-
ing (W=10 A=500). The participants performed six repetitions for
each condition.

We conducted the study on a laptop with a screen resolution
of 1920x1080 pixels using a Fitts’ law testing application [56]. The
ring prototype let users control the OS cursor horizontally on the
computer. Targets were selected using the laptop’s space bar key
to limit gesture recognition algorithm errors. This study was run
without input gating.
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Figure 5: Raw RGB and binary segmented images with finger outlines for various interactions at different resolutions.

5.5 Image resolution
We evaluated the impact of camera resolution on system perfor-
mance by running the prior evaluations at seven different decreas-
ing resolutions: 150x150, 100x100, 50x50, 25x25, 10x10, and 5x5
pixels. The data for this evaluation was generated in the post-
processing stage, where we resized the raw RGB image and re-ran
each evaluation result with different image resolutions. Figure 5
shows multiple examples of images captured by the ring at various
resolutions.

6 RESULTS
6.1 Input Gating
We used the data collected from the input gating and false positives
and gesture recognition studies to build a gating classifier. We ob-
tained less data from the latter, so we duplicated copies of gesture
data to augment the dataset. The classifier was trained to distin-
guish between two classes, gesture vs. not-gesture. The former had
data when the user was actively performing or ready to perform
a gesture, and the latter was trained on data when the user was
not actively performing any interaction. Importantly, image frames
recognized as ’gesture class’ are passed to the gesture recognition
algorithm, which decides whether a gesture is detected in them. It is
possible that a set of frames classified as ’gesture’ may not contain
any gestures if determined by the gesture recognition algorithm.

We evaluated the accuracy of these classifiers using leave-one-
user-out cross-validation (LOOCV). This approach involves training
the classifiers on all participants’ data except one and then testing
the classifiers on the data of the left-out participant. This process is
repeated for each participant, allowing us to evaluate the classifiers’
performance on new, unseen data and estimate its generalization
performance.

The average accuracy across all participants using LOOCV with
the random forest classifier (num trees = 100) was 98.7% with the

original image resolution of 200x200. The lowest accuracy was for
participant P12 at 90.3%. After analyzing the raw image data for
P12, we suspect this low result was due to a slight misalignment of
the ring, which made the thumb less visible in the images.

We further re-ran this analysis with different image resolutions.
All participants had an accuracy of over 99% across all resolutions
except for P12, who had an accuracy of about 90% for all resolutions.
The accuracy consistently remained similar to the original, even
with decreasing resolution. Figure 5 shows that even with reduced
resolution, the overall pattern of the image while performing a
gesture versus not performing one remains distinguishable, which
explains the consistent accuracy observed in the analysis.

Figure 6: Leave-one-out cross-validation accuracy for the
gating classifier at different image resolutions across all par-
ticipants for different classifier types.

We also conducted an analysis to examine the performance of
different classifiers at various resolutions. Figure 6 displays the
results. We selected a set of common classifiers, including logistic
regression, naive Bayes, and N-nearest neighbors. All classifiers
achieved more than 92% accuracy at all resolutions. Logistic regres-
sion’s accuracy increases as image resolution decreases because we
train the models using the same number of iterations (1000); as the
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Figure 7: Confusion matrices of the gating classifier (random forest) at different image resolutions.

resolution falls, the dimensionality of the feature space drops, which
helps it converge faster. Similarly, the accuracy of naive Bayes in-
creases with decreasing resolution as the dimensionality of the
feature space falls. On the other hand, the accuracy of the random
forest classifier decreases as the resolution decreases because the
number of features becomes comparable to or less than the number
of trees (100), causing the model to overfit. The K-nearest neighbors
classifier shows consistent performance across all resolutions and
has the highest accuracy.

Figure 7 displays the confusion matrices for the random forest
classifier for each resolution across all participants. This result
demonstrates that the classifier is very accurate at identifying non-
gestures as non-gestures but less accurate at recognizing a gesture
as a gesture. In the context of gesture recognition, this means that
the classifier has a bias towards false negatives over false positives,
which aids the system in achieving a low number of false positives.

6.2 Stateful Pinch
We calculated the accuracy of pinch detection as the percentage
between the number of camera frames in which a pinch was de-
tected correctly and the total number of camera frames in which a
pinch was performed. To account for human reaction time [21], we
ignored the first six and last six frames of each pinch trial (6 frames
= 180 ms at 30 fps).

The average pinch detection accuracy was 99.81% at the orig-
inal image resolution (200x200 px). Five of the eight participants
achieved a perfect accuracy of 100%, and the remaining three each
exceeded 99% accuracy. For instances where some intermediate
frames were incorrectly predicted, we used an averaging filter over
the predictions to correct the issue. This result demonstrates that
OptiRing can detect pinches continuously at a frame level, making
the interaction stateful.

We re-evaluated pinch detection accuracy at different image
resolutions. The results, shown in Figure 8, indicate that as the
resolution decreases, the accuracy of pinch detection decreases, as
well. The lowest accuracy observed was 90.08% at a resolution of
5x5 px. Regardless, all accuracies remained above 90%.

6.3 Gestures
Our analysis of data collected from the user study revealed that
the average accuracy of gesture recognition across all participants
was 93.11% at the original image resolution of 200x200 pixels. The
highest accuracy was achieved by three participants (P1, P3, and P9)
at 97.78%, while the lowest accuracy was recorded for participant
P11 at 86.67%. The participant with the lowest number of false

Figure 8: The accuracy of the pinch detection algorithm
across all participants at various image resolutions.

negatives was P9, who had none, while the participant with the
highest number of false negatives was P12, with 5 (11.1%); this
higher result was likely due to their lower gating classifier accuracy.
The average number of false negatives per person was 1.6. Among
the gestures, the most common confusion was between the left and
right swipes and between the long tap and right swipes.

We also analyzed gesture recognition performance for different
image resolutions and found that recognition accuracy remained
consistent across all resolutions. Figure 9 shows analysis results,
including the total number of false negatives encountered in the
system.

The algorithm for gesture recognition provides high accuracy
while remaining relatively straightforward: it chiefly relies on the
underlying gating classifier and pinch detection algorithm, which
has demonstrated a highly accurate performance of its own.

Figure 9: Accuracy of the gesture recognition algorithm
across all participants at various image resolutions and the
total number of false negatives encountered for that scenario
(in circles).

6.4 False Positives
We used the data collected from the input gating and false positives
study to detect false positives generated by the system. To analyze
the data, we built a gating classifier model (random forest, num
trees = 100) using data from all participants except one and tested
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it on the left-out user. To test on the left-out user, we ran the gating
classifier followed by the gesture recognition pipeline on the input
stream of image data. We repeated this process for all participants.

At the original image resolution of 200x200 pixels, the average
false positives per hour (FPPH) was 2.4. All participants except P10
and P12 showed zero false positives, and P10 and P12 showed only
one false positive generated during the 5 minutes of testing. We
repeated this analysis for other lower image resolutions: 150x150,
100x100, 50x50, 25x25, 10x10, and 5x5 pixels. At these resolutions,
all participants had zero false positives except P10 and P12, who had
one false positive at several resolutions (P10 at 100x100, 150x150
pixels, and 50x50 and P12 at 100x100, 50x50, 25x25, 10x10, 5x5
pixels). These results indicate a consistently low number of false
positives across all resolutions achieved because the underlying
gating classifier maintains consistent performance across the resolu-
tions. Figure 10 shows the number of false positives with the gating
classifier disabled. The false positives can be further suppressed
with a wake gesture to enable the system.

Figure 10: The number of false positives generated with and
without the gating classifier enabled for each participant at
an image resolution of 200x200 pixels.

6.5 Continuous 1D Input
We use multiple metrics to analyze the 1D Fitts’ law research results:
throughput (bits/s), number of entries into the target, number of sub-
movements required to accomplish the task, time spent to complete
the task, total distance traveled by the cursor while completing the
task, and number of times the participant overshoots the target.
Fitts’ law software calculated and supplied these metrics.

We observe that all participants completed all tasks, which lends
credence to the notion that OptiRing can facilitate continuous 1D in-
teractions that are accessible. Participants completed the task in less
than two seconds for closer targets with a medium to large width
(W=70 A=100, W=40 A=100, and W=70 A=300). However, the tasks
with a target width of 10 were more challenging to complete—these
tasks required at least three seconds to complete (maximum dura-
tion=4.27 sec for W=10 and A=500), with sub-movements ranging
from seven to ten. The highest throughput was observed in the
scenario with the least difficulty (W=70 and A=100) at 1.95 bits/sec,
whereas the lowest throughput was noted in the scenario with the
highest difficulty (W=10 and A=500) at 1.28 bits/sec. The results
remained consistent across different resolutions.

The participants in this study utilized the laptop spacebar for
selection, but in real-world situations, a quick tap can serve as a

selection input. In an interaction scheme with both gestures and
continuous input operating simultaneously, pinch time can be the
basis for differentiating them. A brief pinch can be interpreted as
a gesture, while a longer pinch can activate continuous 1D input.
We implemented such an interaction by combining 1D continuous
scrolling with left and right swipes. Pinches lasting less than 0.2
seconds were used for swipe inputs, while longer ones were used
for continuous 1D input. This interaction is demonstrated in the
video accompanying this paper.

7 EXTENDED INTERACTIONS
Beyond micro-interactions, using a camera as a sensing modality
can provide a larger interaction space, enhancing the system’s pos-
sibilities [33, 45, 48]. In this section, we discuss three interaction
techniques that extend OptiRing’s micro-interaction capabilities.
The interactions occur at full camera resolution (200x200px). They
can be accompanied by privacy notifications while seamlessly tran-
sitioning between high- and low-resolution modes to support pri-
mary and extended interactions, prioritizing privacy. The video
accompanying this paper shows our implementation of these inter-
actions.

7.1 Point and Interact
In this interaction, the user can establish context by pointing to
a specific object in the environment. The system can identify the
object the camera sees and then display a contextual menu de-
pending on the object’s attributes. The user can then utilize micro-
interactions to interact with the menu.

As an example of this interaction, we created two applications: (1)
pointing at a table lamp to open a menu for adjusting its brightness,
where the user can modify the brightness with micro left and right
swipes, and (2) a menu for a music player app that is displayed by
pointing at a speaker, where the user can perform micro left and
right swipes to navigate through a selection of songs. Figure 11 (A,
B) shows objects used in this application.

7.2 Touch on World
When the index finger touches an external surface, the LED light
on the surface shows a different pattern than when the finger is
hovering. When the finger contacts the surface, the light spreads
over a broader area than when the finger floats over it. Figure 11
(C, D) shows images that support this observation. We use this
pattern difference to develop a detector that can identify touch on
external surfaces. The increase in light on a surface depends on
the surface’s reflectivity; hence, we provide a sensitivity option to
adapt to a surface’s reflectivity and develop a sample application
that can recognize touch on the other hand, which can be utilized
as an additional input method.

7.3 Micro and Macro-Interactions
In this interaction technique, we expand OptiRing’s ability to track
the index finger and thumb along with the hand movement. Doing
so enables micro- (thumb-to-index) and macro- (hand) interaction.
We propose three macro-interactions: left flick, right flick, and
continuous 2D hand tracking in the air. A flick occurs when a user
holds a pinch, makes a rapid movement in one direction, and then
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Figure 11: (A, B) An object and an image from the camera when the user points at the object. (A) Table lamp and (B) Speaker.
The image from the camera includes part of the index finger, shown in red. (C, D) The pattern of light created when a finger
bearing the ring touches a surface. When surface contact occurs, the red region of the finger joins to the red area of the light
reflected off the surface. The two instances—touching (D) and not touching the surface (C)— show the camera’s raw image and
the background subtracted image.

releases the pinch. For continuous tracking, the user holds a pinch
while freely moving their hand in 3D space.

We use optical flow on the camera’s feed to identify and analyze
the hand motion. The hand’s macro movements offer an additional
dimension to the interaction space: while micro-interactions ma-
nipulate UI objects, macro-interactions focus attention on a specific
object among several UI objects. For example, we developed an
application to choose a color based on RGB values, where thumb-
to-index swipes increase or decrease the value of a specific color
and macro-flicks select the color.

8 DISCUSSION AND FUTUREWORK
The current version of the prototype presented a satisfactory ex-
perience across a set of users. However, additional improvements
will make the system more comfortable, less obtrusive, and more
practical.

8.1 Low-resolution Cameras
Our findings demonstrate that our system can operate effectively
even at extremely low resolutions, such as 5x5 pixels. At this low
resolution, it may no longer be considered a conventional camera
and could represent a distinct category of optical sensors. These
sensors can be optimized for performance by increasing frame rates,
which is done by prioritizing parallel reading over raster-based
reads used in traditional cameras and reducing power consumption.

8.2 Interaction Recognition
Our current method for detecting user interactions is based solely
on the silhouette of the fingers. However, we can enhance this
approach by utilizing additional visual features of the fingers, such
as the creases between the phalanges. By incorporating more vi-
sual elements into the recognition algorithm, we can gather more
information about finger movements and detect a broader range of
interactions, such as the ability to recognize continuous 2D move-
ments.

8.3 Active Illumination
Our current prototype employs a red LED, which can be obtrusive in
everyday use. Future prototypes could replace the red LED with an
infrared (IR) LED that is invisible to the human eye in combination
with an IR-sensitive camera.

When using an IR LED, it would be necessary to update the
color-based segmentation to segment the fingers. For this scenario,
the IR LED could be made to blink, and the difference between
images captured when the LED was on/off could differentiate the
foreground from the background [49].

8.4 Ring Orientation
In our prototype, the ring must be oriented in a particular way to
get a clear view of the index finger and thumb for optimal sensing.
However, ensuring a well-oriented ring can be challenging since it
could rotate during other tasks, or the user may not consistently
wear it in the required orientation. One potential solution could
employ a camera with a wider field of view and design the ring
with an affordance to encourage wearing the camera inward, such
as by designing some stylish flat or raised portion to indicate the
top. Another option could be to equip the ring with an array of
cameras and opportunistically utilize the camera with the best view.
Additionally, the camera(s) could be integrated inside the ring for
optimal comfort and minimal obtrusiveness.

8.5 Power Consumption
Given the limited battery capacity of wearables and rings, ensuring
the system is energy efficient is essential. OptiRing’s algorithms
are well-suited to run directly on the device since they require low
computation and can classify gestures at a low resolution. However,
for more complex interactions, such as ’point and interact,’ it will be
more efficient to transmit the raw camera feed to an external device,
such as a mobile phone. The camera module provides an analog
output that can be wirelessly transmitted using a voltage-controlled
oscillator, like the MAX2609, through frequency modulation. Cir-
cuits for this idea can be found in [12]. Table 1 lists required system
components and their respective power consumption. Such a sys-
tem would have a power requirement of approximately 40 mW,
which, combined with a wake gesture, is well within the power
budget of a wearable ring device.

Alternative miniature cameras, such as the Himax HM01B0 (2.3
mm wide), which operates at a power consumption of under 2 mW,
could also be utilized to construct a self-contained ring. A wireless
prototype featuring live video streaming using this camera was
showcased in [20].
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Table 1: Power consumption of each component required for
a wireless transmission design of the camera feed.

Component Power consumption (mW) @ 3.3V
Camera (OVM6948 without decoder board) 12

4MHz Oscillator (SIT8021) 4.2
VCO (MAX2609) 11.8

LED (with no duty cycling) 11
Total = 39 mW

8.6 Modeling Approach
Heuristics as a modeling approach can be computationally efficient
and enable a highly responsive experience. However, building a
heuristic-based model can be challenging. Therefore, utilizing a
hybrid approach that combines heuristics-based and ML methods
can be more feasible, as demonstrated by our use of heuristics for
interaction recognition and ML for false positive filtering. Addi-
tionally, optimizing the sensing approach can shrink the problem
space for inference. For example, using active illumination with
our sensing modality (camera) resulted in fast and computationally
inexpensive segmentation.

9 CONCLUSION
We explore optical sensing for enabling single-handed micro inter-
actions. We present the use of a miniature endoscopic camera for
human-computer interaction that, due to its minute size, can be
integrated into small wearables using our novel privacy-preserving
modeling approach. In addition, we demonstrate that a heuristic-
based recognition method could help generalize recognition across
users and sessions while adding minimal computing load. Our
user study results show that our approach is accurate, robust, and
consistent across users. Overall, OptiRing can enable frictionless
interactions in a convenient form factor without requiring user
personalization.
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